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Abstract 

The work visualizes flows corresponding to the exact solutions of the system of hydro-
dynamic equations previously published by the authors, consisting of the vector Navier-
Stokes equation and the law of conservation of mass for an incompressible fluid. This work 
uses the MathGL library for the C/C++ language and ParaView for scientific visualization 
of the results of numerical and analytical calculations. Without the use of such means, it 
would be impossible to see that the fluid flow is stratified into invariant subregions, and 
the trajectories of motion of fluid particles are wound on torus-shaped surfaces. 

Most of the scientific works on the study of hydrodynamic equations cover the results 
of calculations and do not address the questions of the existence of exact analytical solu-
tions. At the same time, these calculations are performed with a specially selected set of 
fitting parameters unique to the equipment used and the computer software used. Ques-
tions about trust in the results of such calculations, their verification with exact solutions 
and the creation of a bank of test examples of applied problems in order to certify the ap-
plicability of the calculation results in practice become relevant. 
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1. Introduction 
Dynamics of a viscous incompressible fluid in the region , t>0 determined by the vec-

tor velocity field u and pressure field p [1]: 

, (1) 

. (2) 
Here t is time,  is fluid density,  is kinematic viscosity, . The pressure 

field p can be found from (1), (2) up to an additive term, which is an arbitrary function of 
time. 

As boundary conditions, paragraphs 2 and 3 consider no-slip conditions 
. (3) 

In paragraphs 4 and 5, another boundary condition is valid no leakage 
, (4) 

where the vector  is the normal to the boundary of the flow region . Boundary condi-
tions in the tangent space to a manifold  are given by narrowing the exact solutions. 

This paper describes various classes of exact solutions of hydrodynamic equations satis-
fying (1) – (3) or (1), (2), (4), previously published in the authors’ works [2–6]. Visualiza-
tion of these classes of solutions allows, abstracting from the existing errors of computa-
tional fluid dynamics methods, to analyze the structure of highly entangled vortex flows. In 



preparing this publication, the MathGL library (https://mathgl.sourceforge.net) and Para-
View (https://www.paraview.org) were used. 

For the oil and gas industry, the problem of mathematical modeling of fluid flow in a 
porous structure is relevant. Solving this problem opens the way to the creation of a do-
mestic “digital field” technology [7], aimed at increasing the profitability of the hydrocar-
bon production process by controlling the dynamics of hydrocarbon-containing fluids in a 
porous medium, including due to thermal effects [8–11] and formation deformation [12]. 

The numerical solution of this class of problems involves the use of supercomputers and 
specially developed software. At the same time, calculations are performed with a specially 
selected set of fitting parameters [4], unique to the equipment used and the computer 
software used. In this regard, it is relevant to create a bank of test examples of precisely 
solvable non-stationary hydrodynamics problems in conditions of complex geometry, the 
use of which will allow one to verify the calculation results and evaluate their accuracy. 
Works [13–21] present the results of numerical modeling of three-dimensional fluid flows 
and estimates of their computational accuracy, and works [22–26] present some classes of 
exact solutions. 

The region of fluid flow is a porous medium , where ∂D is a discrete set of 
points that are nodes of a certain grid, and the adhesion condition (3) is satisfied. The grid 
consists of cells – squares (paragraph 2) or cubes (paragraph 3), the linear size of which is 
equal to . By spatiotemporally replacing, one can obtain a grid whose cells have an arbi-
trary linear size. Further it is assumed . 

2. Exact solutions in a plane periodic structure 
Let us consider the exact solution [2, 3] of problem (1) – (3) in a flat domain  

, λ>0, 
where  denote Cartesian coordinates. Solution (5) takes place for the initial  
condition 

, 
(5) 

 
  

 
Fig. 1. Flow structure corresponding to solution (5) at  

 



The no-slip boundary condition (3) is satisfied at the points . Fig. 1 at  il-

lustrates the flow structure (5). In this case, the entire area is a union of squares with sides 
, completely filling the flow area . Inside these squares, the fluid moves along closed 

trajectories, with centers at the boundary points. These closed trajectories are dif-
feomorphic to two-dimensional torus, i.e., circles. The centers of the squares are located at 
the grid nodes ∂D. Along their boundaries, the liquid slides tangentially. The same effect 
was considered in [27] for the analytical solution of the equations of magnetic hydrody-
namics, while the fluid slid along the boundary of the parallelepiped. 

3. Exact solutions in a spatial periodic structure 
Let us consider the exact solution [2–4] of problem (1) – (3) in the spatial domain D 

, 
valid for the initial condition 

,  
and boundary condition (3). 
In this case, the boundary of the flow region ∂D are the points  and 

, where  one of the vectors of the set 
. 

Let us note the fact that time t affects only the vector length u, but not in his direction. 
When  different from zero, the flow decays with time. The case  was considered by us 
earlier in [28]. When  for velocities  the continuity equation for an incompressible flu-
id is satisfied , and the field  satisfies the stationary Euler equation 

, 
where  
 

  
  

Fig. 2.  Particle trajectory against the background of potential level lines Φ, constructed 
in a plane, orthogonal  to the current value  for two trajectories with different  

 



In [28], we presented the following method, convenient for visual analysis of such prob-
lems. Let the trajectory plunge into the computational domain over time along a certain 
coordinate ( ,  or ). Let’s select the appropriate coordinate axis and, in a plane or-
thogonal to it, we will construct potential level lines  for the current value of the “immer-
sion coordinate.” On the graph of level lines, we denote the current calculated point with a 
square, and a number of previous trajectory points we denote with circles. Let's take such 
graphs for the current calculated point and several previous ones and form an animation 
from them, which can be used to visually track the dynamics of the trajectory against the 
background of the potential, see Fig. 2. 

The trajectory of a particle in such an animation demonstrates a certain smoothly rotat-
ing figure that plunges into the computational domain following the current point of the 
trajectory. Depending on the starting point of the trajectory, the figure formed by the tra-
jectory also changes; in some cases the figure resembles an acute triangle, in others it re-
sembles a rounded petal, in others it takes on intermediate forms. 

4. Exact solutions in a ball and spherical layers 
Let denote by  non-negative roots of the equation 

, , 
sorted by ascending numbers : 

 
In this case, there is an asymptotic estimate at  

. 

Considering a three-dimensional region . Let denote  is the  

radius ball, i.e. 

 , 

and  is the spherical layer with radiuses  and , i. e.  

. 

The ball boundary  let's denote , i. e.  is radius boundary . For each 

vector  denoted by the symbol  its Euclidean norm. 
Let put 

 

Let , . Consider the vector field 

. 

In [5] it is shown that  you can continue in the class of infinitely differentiable 
functions  for the entire space   and the theorem is proven: 

 
 
 



Theorem. Let the vector field 
,   ,    (6) 

 
and scalar function  

, (7) 

where  is an arbitrary time-dependent function . Then a couple  is a solution to 
the system of Navier–Stokes equations (1), (2) in the region . Moreover, on the 
boundary  of each ball ,  the sliding conditions (4) are satisfied, i.e. formu-

las (6), (7) give a solution to problem (1), (2), (4) in each spatial ball  and spherical 

layer . (Equality  by definition means that

). Vector velocity field (6), considered in the region  and 

spherical layers , tends to zero as . 

Let's limit ourselves to the case , then the expression for  will 
be simplified and take the form 

 

 
Table 1 Roots of the equation  is no-flow boundaries 

 0.00000000000000 
 4.49340945790906 
 7.72525183693771 
 10.9041216594289 
 4.49340945790906 

 
In accordance with the theorem, the conditions of non-flow are satisfied  

 
at the boundaries of spheres with radiuses , where  is non-negative roots of the 

equation , sorted by ascending numbers. Multiple values  are given in the table 1. 
Visualization of the numerical simulation results demonstrates “stratification” along the 

spherical layers. Figure 3 shows trajectory animations for the first and second spherical 
layers. It can be seen that the trajectory of the point, which is determined by the vector 
field (4) and numerically simulated by solving the Cauchy problem for the corresponding 
equation of motion, actually remains within the selected spherical layer. Note that move-
ment along the vertical axis in adjacent spherical layers occurs in opposite directions. 



From the animation presented in Figure 4, one can get an idea of all possible trajectories 
that can be realized in the inner ball (Figure 4, left) or in the spherical layers (Figure 4, 
right). 

 

  
Fig. 3. Visualization of the trajectory. Left: starting point  defined 

inside the first spherical layer , near the sphere . Right: starting point 
 defined inside the second spherical layer , near the 

sphere . 
 

  
Fig. 4. Visualization of the dependence of trajectories on the starting point . 

The point changes with the value  (position near the vertical axis) to the value 
(position near the equator). On the left is an animation for the inner ball. ; on the 

right – animation for the second spherical layer . 



5. Exact solutions in a cylinder and cylindrical layers 
Let D is the three-dimensional flow area, . We will consider the 

system of equations (1), (2), (4) in cylinder  and coaxial cylinder  

, , 
, , , 

where ,  are roots of the equation ordered in ascending order 

, , 

where  are Bessel function of the first kind of zero order. 
Consider the vector field , defined in the area  

 
(8) 

 

In [6] it is shown that the function  has a continuation in the class of infinitely dif-
ferentiable functions  throughout space  and the theorem is true: 

Theorem. Let the vector field a  and scalar field  look like 
, , , (9) 

, (10) 

where is an arbitrary function of time t. Then a couple  is a solution to 
the system of Navier–Stokes equations (1), (2) in the region . At the boundary 
of the region of each cylinder ,  the sliding condi-
tion (4) is satisfied, i.e. expressions (9), (10) give solutions to problem (1), (2), (4) in each 
cylinder  and cylindrical layer , , . Vector field (8), considered in 

 and cylindrical layers  tends to zero as . 
The fluid flow corresponding to solution (9), (10) is also divided into invariant subre-

gions. These are the top and bottom halves of the cylinder. In Fig. 5–7 illustrate the evolu-
tion of the flow of one point of fluid, considered in the upper half of the cylinder, under the 
action of vector field (8). The resulting trajectories, described over time, are diffeomorphic 
to torus. For a point taken from the lower half of the cylinder, the flow structure is similar. 
It is only necessary to take into account the symmetry relative to the plane  In 

Fig. 5 shows the trajectory of the point , taken near the surface of 
the cylinder at , over time, in Fig. 6 illustrates the configuration of its path at a later 
point in time. 

 
 
 



 
Fig. 5. Evolution of the flow of a fluid point , appropriate (8) 

 

 
Fig. 6. Evolution of the flow of a fluid point , appropriate (8), 

over time 
 
In Fig. 7 shows the trajectory of the point , taken inside the top 

half of the cylinder, over time. 
 



 
Fig. 7. Evolution of the flow of a fluid point , appropriate (8), 

over time 

6. Conclusion 
The article is devoted to the issues of visualization of numerical and analytical calcula-

tions of solutions to hydrodynamic equations describing the flow of a viscous incompressi-
ble fluid. The use of scientific visualization tools such as the MathGL library 
(https://mathgl.sourceforge.net) and ParaView (https://www.paraview.org) allows you to 
examine the structure of complex three-dimensional flows in more detail and analyze the 
results of their modeling. 

The work was carried out within the framework of the state assignment of the Federal 
State Institution "Scientific Research Institute for System Analysis of the Russian Academy 
of Sciences (Performing fundamental scientific research GP 47) on topic No. 0580-2021-
0007 “Development of methods for mathematical modeling of distributed systems and 
corresponding calculation methods.” 
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